Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun Scaffolds for Heart Valve Tissue Engineering

INTRODUCTION Heart valve replacements are required for a number of heart diseases and replacements, as well as for both pediatric and adult populations. It is estimated that 2.5% of the population has valvular heart disease [1], and annually, over 250,000 people worldwide receive heart valve replacements [1]. Tissue engineering (TE) strategies hold the most promise for permanently restoring the...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering.

Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on post-implantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired...

متن کامل

Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering.

Heart valve-related disorders are among the major causes of death worldwide. Although prosthetic valves are widely used to treat this pathology, current prosthetic grafts cannot grow with the patient while maintaining normal valve mechanical and hemodynamic properties. Tissue engineering may provide a possible solution to this issue through using biodegradable scaffolds and patients' own cells....

متن کامل

Tri-layered elastomeric scaffolds for engineering heart valve leaflets.

Tissue engineered heart valves (TEHVs) that can grow and remodel have the potential to serve as permanent replacements of the current non-viable prosthetic valves particularly for pediatric patients. A major challenge in designing functional TEHVs is to mimic both structural and anisotropic mechanical characteristics of the native valve leaflets. To establish a more biomimetic model of TEHV, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Biomaterialia

سال: 2017

ISSN: 1742-7061

DOI: 10.1016/j.actbio.2017.01.051